<

-~

AD-A271 346

NPSCS-93-009

NAVAL POSTGRADUATE SCHOOL

[H

L

|

|

hn‘:\

-

Monterey, California

Instructions for Use of the Metutor Means-Ends Tutoring System
Neil C. Rowe
July 1993
TECHNICAL REPORT

October 1, 1992 to July 1993

Approved for public release; distribution is unlimited.
Prepared for:

Naval Postgraduate School
Monterey, California 93943

93-25420
\R\\N\\\\N\WM\%

A




Best _
Available
Copy



NAVAL POSTGRADUATE SCHOOL
Monterey, California

REAR ADMIRAL T. A. MERCER HARRISON SHULL
Superintendent Provost

This report was prepared with research funded by the Naval Research Funds provided by the Naval
Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:
Pl e K,
. S oene
NEIL C. ROWE
Associate Professor of
Computer Science
Reviewed by: Released by:

UpTonken (omnsmac,

YUTAKA KANAYAMA® |
Associate Chairman for Deanr of Research .
Research




UNCLASSIFIED

SECURTTVCTASSFCATION OF TRIS PAGE

REPORT DOCUMENTATION PAGE

2 HEPORYT SECURIIY CLASSIETCATION “m
UNCLASSIFIED
2 ORITY COASS ON AUTRORITY - : !
~BETTREE SRR IR ST Approved for public release;
distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) . )
NPSCS-93-009 Naval Postgraduate School
2 NAME OF PEHFORMING ORGANIZATION O "7a. NAME OF MORITORING ORGANIZATION
omputer Science Dept. (f apphcatie) ONR
Naval Postgraduate School Cs
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Cily, Stai, and ZIP Code)
Monterey, CA 93943 San Diego, CA
2 NAWE OF FORDIRG/SPONSORR 55 OFFICE SYMBOU | 0 PROCUREMERT INSTRUMER T TOENTIFICATON RUMBER
Naval Postgraduate School (- amad DARPA 13 Project under AO 8939
8c. ADDRESS (City, State, and ZIP Code) T0_SOURCE OF FURDING NOMBERS
PROJECT . 1TASK . JWORKONT |
ELEMENTNO. | NO. NO. ACCESSION NO.
Monterey, CA 93943

11. TITLE {include Secunity Classification)
Instructions for use of the Metutor means-ends tutoring system

12 PERSONAL AU THOR
Neil C. Rowe
3 TYPE OF REPOR [130. TIME COVERED 4. DATE OF REPORT (Year, Month, Day) | 15. PAGE quNT
Interim grom 9210 10 9307 935719
e e——

1. SUPPLEMENTARY NO ON
17, COSATI CODES 18. SUBJE.CT TERMS (Com'nug on reverse i necessary and identify by block nqmbeq .

1 GROUP SUB.GROUP tutoring, computer-aided instruction, means-ends analysis, virtual reality,

Prolog, reactive environments, declarative specification

19, ABSTRACT (Continué on reverse if nocosa?' and identify by block number) . .
The Metutor system is a set of software engineering tools to enable instructors not especially knowledgeable about

computers to implement intelligent computerized tutors.

0. D RIBUTION/AVAILAB Y O B

[ UNCLASSIFIEDUNLIMITED [ SAME AS RPT. [Joncusers| UNCLASSIFIED

= B |

DD FORM 1473, 84 MAR 83 APR edition may be used untit exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED




Instructions for use of the Metutor means-ends tutoring system

Neil C. Rowe
Department of Computer Science
Code CS/Rp, U. S. Naval Postgraduate School
Monterey, CA USA 93943
rowe@cs.nps.navy.mil

1. Introduction

The Metutor system is a set of software engineering tools 10 enable instructors not especially
knowledgeable about computers to implement intelligent computerized tutors. The tutors constructed
are for skills requiring the sequential application of actions. The tools are contained at NPS in the
directory ~rowe/pro/metutor, and the main files are:
--metutor2? eic: the core problem-independent code. written Quintus Prolog;
--mefire, the original demonstration application for firefighting, which can be run either with or
without graphics;
--megraph27 etc: the problcm-independent graphiv> interface for the student, written in Quintus
Prolog using the Prowindows Xwindows interface: this is loaded automatically when the program
is started with graphicsflag asserted;
--drawpath, a program that helps the instructor construct line drawings with the mouse, and save
them as bitmaps (this runs under Prowindows).
The directory also contain other applications that students have writien, most notably:
--kangfuel, a aircraft emergency procedure tutor. which also has graphics;
--galvinhostage, a hostage-crisis management tutor:
--seemscuba, a scuba procedure tutor;
All these files should be unprotected; feel free to explore them. Other example applications, less
thoroughly tested. also exist, including tutors for (1) replenishment a1 sea, (2) cardio-pulmonary resusci-
tation, and (3) use of an electronic mail tool.

The firefighting tutor is the best example tutor to study because it is well-debugged, has a nice graphics
interface, and contains most of the ideas mentioned below. To run it, do cd ~rowe/pro/metutor to
Unix, then prolog. then [metutor27,mefire), go. (note the necessary period at the end).

We discuss now the necessary problem-dependent information that an instructor must specify to build a
new tutor application. This will go in a separate file, like mefire, that will be loaded together with a
metutor file to create the tutor.

2. Fact and operator representation

The problem definition that a teacher supplies must follow strict formats compatible with Prolog data.
That means facts and actions ("operators™) must be in first-order predicate calculus notation. This nota-
tion consists either of a single word or a word followed by a left parenthesis, some arguments, then a
right parenthesis. Multiple arguments must be separated by commas.

Example operator representations are “yell”, “test(oxygen)” meaning to test the oxygen, and
"test(oxygen,tester)” meaning (o test the oxygen tester. Generally the first word should be a verb, and
any remaining words should constitute (when taken in order) the rest of a phrase describing the operator
more precisely; otherwise the English paraphrase may sound funny.

Example fact representations are "smokey” meaning there is much smoke present, "open(door)” mean-
ing the door is open, and “inside(fireman.compartment)” meaning the fireman is inside the compartment.
Generally with arguments, the word in front of them should be a property or relationship name.




precondition(extinguish,[location(fire),raging(fire),equipped(team),
set(boundaries),confronted(fire)]).

This says that in order to extinguish a fire, your location must be at the fire, the fire must be raging. the
fire team must be equipped, the boundaries of the fire must be set, and you must be facing the fire.

In the three-argument form, the additional argument is the second, the context (list of facts which must
be present in the current state) for the precondition facts to apply. The difference between the first and
second arguments is that the first represents subgoals that must be achieved if not already true, whereas
the second argument represents facts that are just checked without any attempt to achicve them. The
three-argument form is useful when two or more operators can achieve the same goal facts, and the best
choice depends on the current state.

As with recommendation conditions, the three-argument forms have priority over the two-argument
forms. Also note that a precondition assertion must be given for every operator in the problem: if there
no preconditions on application an operator, it should have the cmpty list ([]) as its precondition list.

Precondition facts can also be negative, meaning they must be false before an operator can be applied.
Again, use the not construct. Such preconditions succeed if the indicated fact is absent in the state to
which you want to apply the operator. But mot facts will never appear in state descriptions, since the
absence of a fact is equivalent to the assertion of the negative of that fact.

Metutor is intended for applications that present significant numbers of feasible alternative approaches
to the student (else a simpler tool is appropriate). Thus. the instructor is cautioned not overspecify
preconditions so that the student is confined to only a narrow comidor of possible operator sequences.
Instead, the student should be allowed to see the consequences of their suboptimal operators. For
instance, if a firefighting student forgets to equip their fire team, the team members should get bumnt
when they try to extinguish the fire; this is more educational than putting an extra precondition on
"extinguish” of "equipped(team)”. In general, preconditions should be either logically necessary condi-
tions (like you cannot put out a fire unless the fire is still buming) or critical requirements of the appli-
cation.

8. Postconditions

Postconditions represents the consequences of an operator. There two kinds, facts that are false (if they
ever were) after an operator is applied, "deletepostconditions”, and facts that are true (if they were not
already) after the operator is applied. "addpostconditions™. The deletepostconditions are removed first,
then the addpostconditions are added. Postconditions should represent direct consequences of the opera-
tor.

The predicate names used are deletepostcondition and addpostcondition. They have two-argument,
three-argument, and four-argument forms. In the two-argument form, the first argument is operator

name and second argument is the list of postconditions. In the threc-argument form, the added middle 1 For
argument is a context like with three-argument recommendations and preconditions. The four-argument

form is like the three-argument form except that its last argument is a message string, enclosed in apos- I g/
trophes, which will be printed out for the student when the postconditions are applied; this is useful for . 4 0O
unusual postconditions. Here are some examples: o utig
Df.u; Q‘\J&’.-u“'-. i ;(.\vg, { & ',Ji :L' By
Distrlhuticn/

Avallvh‘li’y Vodes
‘vai; _nu‘or
3 ‘Dist { 5240181

/\zl

[




deletepostcondition(extinguish,[ raging(fire)tested(gases),tested(oxygen),
verified(out(fire)),watched(refiashing),debriefed(team), set(boundaries),
safe(gases),safe(oxygen), unsafe(gases),unsafe(oxygen),confronted(fire)]).
addpostcondition(extinguish (out(fire),watery smokey]).
addpostcondition(extinguish,[not(deenergized(fire,area))),
{present(casuaity),dead(casualty),present(crater),raging(fire)],
'There is a big explosion!®).

The first definition gives all the things that become false, if not already. when a fire is extinguished:
that it is raging. that oxygen and other gases are tested or safe or unsafe, that the fire is verified 10 be
out, that reflashing of the fire is being watched, that the fire team is debriefed, that the boundaries are
set, and that the fire is confronted. The second definition gives the things that usually become true in
the same situation: that the fire is out, that the area is watery, and that the area is smokey. The last
definition gives the things that become true in the special case in which the srudent tries to extinguish
when the power 0 the fire area is not off: that a casualty is present and dead. that a crater in the floor
is present, and that the fire is raging. Also, when the special case for the third rule occurs, the message
"There is a big explosion!” is printed out.

Four-argument forms have priority over three-argument forms, and three-argument forms have priority
over two-argument forms. This means special cases have priority over defaults.

The first argument to all these postcondition forms may also be a list of operators instead of a single
operator. Then the postconditions apply to all operators in that list. Note also there cannot be negative
postconditions.

6. Random changes to states

One of the must important features of the Metutor system is ability to specify random changes to states.
Such changes can suggest the indeterminacy of the real world, as well as unforeseen complications that
can arise. For instance in firefighting, the fire may refuse to go out after one attempt at extinguishing
it, or a member of the fire team may get injured. or someone may accidentaily tum the power back on.

Such events can be specified by randchange facts of five or six arguments. The only difference
between the five-argument and the six-argument forms is in an optional sixth argument, a message that
can be printed out when the random change is performed. The first argument is the operator name, the
second is the context, the third is a list of facts that will be deleted (if present) by the random change,
the fourth is list of facts that will be added (if not present) by the random change, and the fifth argu-
ment is the change probability (its relative frequency). For example:

randchange(extinguish,{ ],out(fire),raging(fire),0.3,’Fire is still raging.’).
This says that 30% of the time when a student tries to extinguish a fire, the fire will continue raging.
Each random change that can apply to given state will be applied independendy, with independent pro-

babilities. However, if more than one random change is applied, the second change will operate on the
state resuiting from the first change. Random changes are done after the postconditions are computed.

Randchange facts can refer to a special action "init"; such changes will be applied to the start state, to
derive the first state in which the student must choose an action.

As with postconditions, the first argument may also be a list of operators, in which case the random
changes apply to any operators from that list.

7. Initialization




Initialization of the tutor for application requires three one-argument predicates. The intro predicate
takes one argument, a string which printed out at the start of the session to the swdents. The
start_state predicate specifies the starting state, and goal specifies the top-level partial goal description.
The latter is partial only in the sense that you need not specify all the facts that will be true when a
goal state is achieved, only the essential facts.

For example, our firefighting tutor has these specifications:

intro(’You are the fire team leader on a US. Navy ship; a fire is reported.’).

start_state([location(repair,locker),raging(fire),smokey]).

goal(| verified(out(fire)),safe(gases) safe(oxygen),not(equipped(team)),
not(smokey),not(watery),not(watched(reflashing)),not(present(casuality)),
not(unreplaced(casuaity)),not(treated(casualty)),not(dead(casualty)),
debriefed(team),deenergized(fire,area)}).

8. Associating bitmaps with facts

If the fact graphicsflag of no arguments is included somewhere in the problem-defining file, the Prolog
compiler will try to display bitmap graphics for facts in the current state that have associated bitmaps.
Such associations are specified with the bmap predicate of five or six arguments. The first argument is
a fact, the second is a context under which this bitmap should be displayed, the third is the name of the
file containing the bitmap to be loaded, the fourth is the X-coordinate of where the upper lefi comer of
the bitmap should go on the screen, and the fifth is the Y-coordinate of the upper left comer. For
instance:

bmap(raging(fire), [location(fire)], fire2,308,135).

This says that if the fire is raging and the fire team is located at the fire, the screen should show flames
(whose bitmap is in file "fire2") with upper left comer of the bitmap at (308.135). Dimensions
represent integer numbers of pixels, which on a Sun terminal are approximately 0.2 mm. Coordinates
are measured from left 1o right for the X-coordinate and top to bottom for the Y-coordinate.

An optional sixth argument to bmap is the color associated with the bitmap. which is only used on a
color terminal. determined automatically by querying your terminal. The color argument must be one
of white, black, gray. red, blue, green, yellow, purple, and cyan (do not quote the color name).

Since color graphics do not print well in a screen dump with the "xwd” command of XWindows,
include the zero-argument nocolorflag in your file to prevent it from using color on a color terminal if
you want to do screen dumps. To be able to do a screen dump just by typing "printscreen” and left-
clicking the mouse in a background area of your screen, include this line in your ".cshrc” file:

alias printscreen *xwd | xpr -device ps | ipr -Pps’

You can have more than one shape shown for the same fact, if you place them far enough apart on the
screen. Shapes are stored as rectangular bitmaps; whenever two such rectangles overlap on the screen,
the colored areas of both are intermiingled by default, with the color chosen randomly when two
different colors appear at the same place on the screen for the two rectangles. If you prefer instead that
certain shapes occlude others, include facts of predicate name draw_order to say the first-argument bit-
map file should be drawn before the second. For instance:

draw_order(firel team1).
says that the bitmap in file "team1” should be drawn over bitmap in "fire1". Text (see below) cannot
be made to occlude unless you put it a bitmap.
The bitmap file necessary should be in Postscript black/white form, even if it is to be drawn in a color.
5




Two utilities, the simple drawpath and the more elaborate drawgraph. can be used to create simple
line drawings and shapes and put them in bitmaps. These files are in ~rowe/profpw; start Prowindows,
and them load them by [~ rowe/pro/pw/drawpath’]. or [~ rowe/pro/pw/drawgraph’]. (note the
periods at the end).

Some facts are better represented by text labels in the drawing part of the screen, or maybe text is
appropriate in addition to a shape, like labels on a picture of switch. If so, and black non-occluding
labels are sufficient, use text facts of five arguments like bmap facts but where the third argument is
the text string to display rather than a file to load. Text is always displayed in black. You can display
several texts at different places for the same fact.

9. Noaverbal action selection

Besides clicking on the menu items, you can define lefi-clicks within the picture area to select opera-
tors. For instance, if you have a picture of vertical switch in the picture, left-clicking near the top of it
can tum the switch up. To implement this, you must specify the coordinates of a rectangular area
within the picture wherein a click means a given operator name. Predicate opclick needs the coordi-
nates of the upper left comer first, then the x-width and y-height, then the context, then the operator
name. For example:

opclick(200,20,20,50, visible(switch,power)),turn(power,on)).

says that whenever the student clicks the left mouse button within the area 20 pixels wide and 50 pixels
high with upper-left comer (200,20), and whenever the power switch is then visible, it means that the
student is choosing the operator "turn power on”.

10. Debugging flags

Two flags. debugflag and studentflag. help debug programs. The first helps debug the instructor’s
recommended, precondition, deletepostcondition, and addpostcondition definitions. When debugflag
is asserted (by assert(debugflag).). the program will print out exhaustive information about all the
hypothetical reasoning that it does.

The debugflag printout uses level numbers, which refer to depth in the means-ends problem-
decomposition tree, counting the root problem as level 1. The printout is sufficient for you to build a
complete means-ends tree if you need to figure out more precisely what the hypothetical reasoning is
doing. The "Unsolvable problem” message is the most common indication of a bug (though it does not
always mean a bug, as when two operators are recommended for a situation and the program must
backtrack if it picks the wrong one). Its first occurrence is usually the most significant, because one
unsolvable subproblem can make problems that depend upon it unsolvable too. It suggests a missing
recommendation or addpostcondition for an operator, or an unnecessary precondition or deletepostcondi-
tion. The operator last mentioned when the unsolvable problem is detected is often the operator with
the bug.

The debugflag also causes printout of other diagnostic information, including the operator that the tutor
thinks is best at every point, and for a graphics program, the list of bitmaps and their parameters for the
current screen display. The program caches the hypothetical reasoning, so the second time you run a
problem you will get less debugging information, with indications as to when the cache is invoked.
Thus, if you are swamped with information by setting the debugflag initially, first run the program
awhile, type control-C and "a” for abort, and then type "go.” again to restart.

When studentflag is asserted (by assert(studentflag).), the system avoids checking the instructor’s code
for a number of common careless errors. These include missing definitions, wrong argument types, and
some spelling errors. This checking takes time, so it should be avoided when instructor is sure their
code is correct.




11. English language output

The system also prints out some English paraphrases of the states encountered and objectives desired.
This code simply assumes that words ending in "s" are plural, otherwise singular. If this not true. like
for "gas” and "sheep”, include one-argument facts singular or plural to indicate the proper forms.

The writelist and writefact routines control the printout of English paraphrases. They are defined by
specifications of many special cases. More advanced programmers may wish to modify them to fine-
tune the English paraphrases for their applications.

12. Example

The rest of this paper shows the full definition for the firefighting tutor, illustrating most of the features
described above. We also show some screen displays produced by this program.




/* Problem definition for the means-ends firefighting wtor */
intro(’You are the fire team leader on 2 U.S. Navy ship. A fire has been reported.’).

recommended({treated(casualty)),[].direct(medical.corpman)).
recommended({treated(casualty)),[].give(firstaid)).
recommended([not(present(casualty))],[}.remove(casualty)).
recommended({not(unreplaced(casualty))].[) replace(casualty)).
recommended([out(fire)).[deenergized(fire.area)] e xtinguish).
recommended({out(fire)).[not(deenergized(fire.area))].deenergize).
recommended([ verified(out(fire))},[].verify(out)).
recommended({deenergized(fire.area)].[) deenergize).
recommended({set(boundaries)}.{}.set(boundaries)).
recommended({confronied(fire)],[deenergized(firearea)) approach(fire)).
recommended({confronted(fire)},[not(deenergized(fire area))].deenergize).
recommended([ waiched(reflashing)).[].set(refiash, waich)).
recommended({safe(gases)].[].test(gases)).
recommended([ok(oxygen.tester)].[).test(oxygen. tester)).
recommended([safe{oxygen)].[].test(oxygen)).
recommended([not(smokey)}.[}.desmoke).
recommended({estimated(water)].[],estimate(water)).
recommended([not(watery)].[).dewater).
recommended({debriefed(team)),[].debrief).

recommended [equipped(team)].[].equip).
recommended([not(equipped(team))).(].store(equipment)).
recommended([not(watched(reflashing))].[].secure(reflash,watch)).
recommended([location(fire)],[equipped(team)].go(fire)).
recommended([location(fire)],[not(equipped(team))].equip).
recommended({location{repair locker)}.[].go(repair.locker)).
recommended([safe(X)),[].wait).

precondition(remove(casualty),
{present(casualty).treated(casualty).not(dead(casualty)))]).
precondition(direct(medical .corpman),[present(casualty),
present(medic),not(angry(medic)),not(dead(casualty))]).
precondition(give(first,aid),[present(casualty).not(dead(casualty))}).
precondition(replace(casualty),[unreplaced(casualty)}).
precondition(equip.[location(repair Jocker),not(equipped(team)))).
precondition(dc energize [location(fire))).
precondition(set(boundaries),[location(fire).not(set(boundaries)))).
precondition(approach(fire),{location(fire) not(confronted(fire)),
raging(fire),set(boundaries).equipped(team))).
precondition(extinguish,[location(fire) raging(fire).equippe/team).
set(boundaries) confronted(fire),not(dead(casualty)))).
precondition(set(refiash,watch),[not(watched(reflashing)).
verified(out(fire)).safe(gases).safe(oxygen))).
precondition(verify(out),(location(fire) out(fire)]).
precondition(test(oxygen,tester),[equipped(team)]).
precondition(test(oxygen), [ok(oxygen,iester).equipped(team),
not(unsafe(oxygen)).not(safe(oxygen)) Jocation(fire)]).
precondition(iest(gases),
{equipped(team).not(unsafe(gases)).not(safe(gases)) Jocation(fire)]).
precondition(desmoke,[location(fire),out(fire),smokey]).
precondition(estimate(water),[location(fire), watery out(fire)]).

8




precondition(de water,[location(fire), watery estimated(waier))).
precondition(store(equipment),(location(repair Jocker) equipped(team)]).
precondition(debrief,[location(repair Jocker) not(equipped(team)).
watched(reflashing)]).
precondition(secure(reflas.: .atch).iwatched(reflashing).debriefed(team)}).
precondition{go(fire).i' _ation{repair locker),not(dead(casualty)))]).
precondition(go(repair Jocker),[location(fire).not(dead(casualty)))).
precondition(wait,[]).

deleteposicondition(remove(casualty), [present(casualty) treated(casualty)]).
e’ depostcondition(direct(medical.corpman),[]).
deleteposicondition(give(first.aid),(]).
deletepostcondition(replace(casualty),(unreplaced(casualty)]).
deletepostcondition(equip, [debriefed(team))).
deletepostcondition(deenergize [energized not(smokey).tested(gases).
tested(oxygen),debriefed(tcam).verified(out(fire))]).
deletepostcondition(set(boundaries),[tested(gases).tested(oxygen),
debriefed(team), verified(out(fire)) confronted(fire))).
deletepostcondition(approach(fire),[tested(gases) tested(oxygen),
debriefed(team). verified(out(fire))]).
deletepostcondition(extinguish [raging(fire).tested(gases) .tested(oxygen).
verified(out(fire)). watched(reflashing) debriefed(ieam) set(boundaries),
safe(gases),safe(oxygen).unsafe(gases), unsafe(oxygen).confrontedfire)]).
deletepostcondition(set(reflash.watch),[]).
deletepostcondition(verify(out).[]).
deletepostcondition(test(gases),[unsafe(gases).safe(gases))).
deletepostcondition(test(oxygen.tester),[]).
deletepostcondition(test(oxygen).[unsafe(oxygen).safe(oxygen))).
deletepostcondition(desmoke.[smokey,.debriefed(team).unsafe(gases).
tested(gases),unsafe(oxygen).tested(oxygen))).
deleteposicondition(estimate(water),[]).
deletepostcondition(dewater,[watery estimated(water) debriefed(team),
tested(gases).unsafe(gases),tested(oxygen).unsafe(oxygen)]).
deletepostcondition(store(equipment).[equipped(tcam))).
deletepostcondition(debrief,[]).
deletepostcondition(secure(reflash.watch).[ watched(reflashing)]).
deletepostcondition(go(fire).[location(repair Jocker)]).
deletepostcondition(go(repair Jocker),[location(fire) confronted(fire).
tested(gases).tested(oxygen))).
deletepostcondition(wait, [tested(gases) tested(oxygen).unsafe(gases),
unsafe(oxygen)]).

addpostcondition(remove(casualty),[unreplaced(casualty)]).
addpostcondition(direct(medical.corpman),[treated(casualty))).
addpostcondition(give(first.aid),[treated(casualty))).
addpostcondition(replace(casualty).(]).
addpostcondiiion(equip.[equipped(team))).
addpostcondition(deenergize [deenery;: -+d(fire,area) smokey]).
addpostcodition(set(boundaries),[set(boundaries) smokey]).
addpostcondition(approach(fire).[confronted(fire).smokey]).
addpostcondition(extinguish,[out(fire), watery smokey]).
addposticondition(set(reflash,waich),[watched(reflashing))).
addpostcondition(verify(out),[ verified(out(fire))]).
addpostcondition(test(gases), [tested(gases).safe(gases))).

9




addpostcondition(test(oxygen tester),[ok(oxygen iester))).
addpostcondition(test(oxygen),[tested(oxygen).safe(oxygen)}).
addpostcondition(desmoke.(]).

addpostcondition(estimate( water),[estimated(water))).
addpostcondition(de water,[]).
addpostcondition(store(equipment),[}).
addpostcondition(debricf,[debriefed(team)]).
addpostcondition(secure(reflash, watch),[]).
addpostcondition(go(fire),{location(fire)]).
addpostcondition(go(repair Jocker) [location(repair.locker))).
addpostcondition(wait,[).

deletepostcondition(deenergize,[not(equipped(team))).[tested(gases).
tested(oxygen).verified(out(fire)))).
deletepostcondition(debrief, [location(fire)],[]).
deletepostcondition(go(fire),[raging(fire)).
(location(repair locker).tested(gases). tested(oxygen),
safe(gases).safe(oxygen))).

addpostcondition(deenergize,[not(equipped(icam))},(present(casualty)]).
addpostcondition(approach(fire),[not(equipped(team))].
(present(casualty).smokey]).
addpostcondition(test(gases).[location(fire) raging(fire)].
[tesied(gases).unsafe(gases)]).
addpostcondition(test(gases),[location(repair Jocker)).
(tested(gases) safe(gases)]).
addpostcondition(test(oxygen) {location(fire).raging(fire)],
[tested(oxygen).unsafe(oxygen)]).
addpostcondition(iesi(oxygen).[location(repair Jocker)].
[tested(oxygen).safe(oxygen)]).
addpostcondition(give(first aid).[present(medic)].
[treated(casualty).angry(medic))).
addpostcondition(extinguish.[not(deenergized(fire area))].
[present(casualty).dead(casualty),present(crater) raging(fire)].
“There is a big explosion!’).
addpostcondition(set(reflash.watch),[smokey].{present(casualty)).
*The reflash watchperson was overcome by the smoke.’).
addpostcondition(set(reflash, watch).[unsafe(oxygen))].[present(casualty)].
*The reflash watchperson collapsed.’).
addpostcondition([go(repair.locker),go(fire) equip.deenergize,
set(boundaries).approach(fire) extinguish,desmoke estimate(water),
dewater test(gases),test(oxygen.tester) test(oxygen),
set(reflash,watch).store(equipment) debrief secure(reflash,watch)},
[present(casualty)).[dead(casualty)],’ Your casualty died!’).

randchange(init,[).(}.present(medic).0.5).
randchange([approach(fire).extinguish),[],[] present(casualty),0.15,
*A team member got bumed.’).
randchange(extinguish,[],out(fire) raging(fire),0.3, Fire is still raging.’).
randchange([ verify(out).desmoke,dewater store(equipment),debrief],
[not(verified(out(fire)))],
[out(fire),verified(out(fire)).debriefed(team).tested(gases),
tested(oxygen).safe(gases).safe(oxygen).watched(reflashing)].
[raging(fire).smokey].0.3, Unfortunately the fire has flared up again.’).

10




-

randchange([ verify(out),desmoke dewater sture(equipment).debrief],
{verified(out(fire))],[out(fire),verified(out(fire)).debriefed(team),
tested(gases),tested(oxygen),safe(gases) safe(oxygen).watched(reflashing)].
[raging(fire).smokey},0.07, Unfortunately the fire has flared up again.’).
- randchange({desmoke,dewater.ext.nguish).deenergized(fire.area),
deenergized(fire,area),[).0.08,'A team member accidentally tumex *he power on.’).
randchange({desmoke,dewater.store(equipment)).[].[) present(casualty).
* 0.08,"A team member got injured.’) :-
randchange(iest(gases) safe(gases).safe(gases),unsafe(gases).0.3.
*The gases are unsafe.’).
randchange(test(oxygen).safe(oxygen),safe(oxygen),unsafe(oxygen).0.3.
*The oxygen is unsafe.').

nopref(set(boundaries),deenergize).
nopref([test(oxygen,tester),test(oxygen)}.[test(gases))).
nopref([estimate(water),dewater],[desmoke]).
nopref([estimate(water) dewater],[test(gases)]).
nopref{desmoke,jtest(gases)}).

/* The following are info for the graphics interface */
bmap(location(repair,locker).[equipped(team)] equipped3.550.343 blue).
bmap(location(repair locker),[not(debriefed(team))],
location_repair_locker,560,300,blue).
bmap(location(fire),
[equipped(team).not(confronted(fire)).not(present(casualty)).
not(unreplaced(casualty))].
equipped3,550,190.blue).
bmap(location(fire), {equipped(team).not(confronted(fire)) present(casualty)].
equipped2,550,190.blue).
bmap(location(fire),
{equipped(team).not(confronted(fire)) unreplaced(casualty)].
equipped2,550,190,blue).
bmap(location(fire),
[not(equipped(team)).not(confronted(ﬁre)).not(pn:sent(casualty)).
not(unreplaced(casualty))].
unequipped3.550,190,blue).
bmap(location(fire),
[not(equipped(team)).not(confronted(fire)),present(casualty)],
unequipped2,550,190.blue).
bmap(location(fire), [not(equipped(team)).not(confronted(fire)),
unreplaced(casualty)].
unequipped2,550,190,blue).
bmap(confronted(fire),[].confronted_fire.464,19.blue).
bmap(raging(fire), (location(repair, locker)). fire1.2,158,red).
bmap(raging(fire), [location(fire)], fire2.308,135.red).
bmap(smokey, (location(repair, locker)}, smokey1.8,1,yellow).
bmap(smokey, [location(fire)], smokey2.380,6.yellow).
bmap(watery,[).watery 273,272 green).
bmap(present(medic).[not(angry(medic)).not(treated(casualty))],
present_medical_corpman,775,170.red).
bmap(present(medic).[not(angry(medic)).treated(casualty)],
present_medical_corpman,742,170.red).
bmap(present(medic).[angry(medic)).present_medical_corpman,850,50.red).
bmap(present(casualty),{].present_casualty,651.188.blue).

11




—_—

bmap(treated(casualty),[].treated_casualty 639.236,blue).

bmap(watched(reflashing),[].waiched_reflashing.330.90,biue).
bmap(set(boundaries),{location(fire)].set_boundaries,240,227 purple).

bmap(verified(out(fire)),[location(fire)]. verified_out_fire,316.163 purple).

bmap(deenergized(fire.area),[location(fire)} deenergized_fire_area,11,57). -
bmap(debriefed(team),{].debriefed_team,526,200.biue).

bmap(ok(oxygen,tester),[].0k_oxygen_tester,100,190,cyan).

bmap(tested(oxygen).(].tested_oxygen,89.266). ¢
bmap(tested(gases),[].tested_gases,15,267).

bmap(safe(oxygen),[].safe_oxygen,88,243 purple).

bmap(safe(gases).[}.safe_gases.31,242 purple).

bmap(present(crater), [location(fire)], smokey2,100,190,yeliow).

bmap(present(crater), {location(fire)], smokey2,5,100,yellow).

bmap(present(crater),[}.present_crater,20,250).

bmap(dead(casualty).[}.dead_casualty,665,190).

text(estimated(water),[]," 100 gallons”,330.285).

opclick(273.272,230.61,[location(fire),watery).de water).

opclick(380.6,320.175.[location(fire).smokey).desmoke).

opclick(89.266,81,197,[location(fire),unsafe(oxygen)].test(oxygen)).

opclick(15.267,85,195,[location(fire),unsafe(gases)}.test(gases)).

opclick(775,170,55.125 [location(fire) present(medic).not(angry(medic))].
direct(medical corpman)).

draw_order(ok_oxygen_tester.tested_oxygen).
draw_order(ok_oxygen_tester,safe_oxygen).
draw_order(present_casualty present_medical_corpman).
draw_order(treated_casualty.present_medical_corpman).

start_state([location(repair.Jocker),raging(fire).smokey}).

goal([verified(out(fire)) safe(gases),safe(oxygen),not(equipped(team)),
not(smokey),not(watery).not(watched(reflashing)).not(present(casualty)),
not(unreplaced(casualty)),not(treated(casualty)).not(dead(casualty)),
debriefed(team),deenergized(fire area)]).

12




313

Jieysey

e

DIl ol

N0 Ajpiea
3503 uebAxo 31503

10350
usbixo 3 mom

weud) 10
WOIBM ySB[J0) o8
sejIepunoq Jes

otmw__'otmw_
8
[z0]{ {[svo]

i I

i
e

—_ =
¥ [

"
\\ vo o Sames webiso 1

‘sgesun st usbixo ‘sjwsun sxe seseb ‘pe3se] st
‘peiso) oxe seswb ‘Buybex sy 8333 ‘Juesead sy OF
‘uogjzeaor 81 81373 ‘peddinbe =1 wwe3 ‘dexoms sy 3
sen¥yy yyyyyyy ONIJ ACU BIW SIDW] OBOUL yywyvuvvyswy
‘wsoseb 3883, uwyyl sou JuwjzzodEy exom S§
«szybasusep, :uTY W Inq °
‘seseb 3883 03 esoyd no
‘3O ST 2e3s8e] usbixo puw ‘sjesun sy
‘pe3sey st usbixo ‘Burbex sy sxy3 ‘Juesead sy OF
‘uoxjeo0T 8T 8x33 ‘paddinbe 5T wwey ‘Asyowms St 3T
YUY NUNNNYY wy (O0NIF NOU BIB SIDVW] SBMUL yyyywuvuyuyy
‘ Jusbixo 383, ueyl Aou JuewIzodEy eIOoW ST
«8ztbasusep, :quUIY ® Inq ‘30|
‘usbixo 3s83 03 8soyd nNoOjZ

‘3O 87 183883 usbixo pue ‘HButbex sy 8xy3 ‘juessad 8T OF
‘uot3EooT 8% 8313 ‘peddinbe sy weey ‘lejoms ST 37
ccccc wyyyyyyy ‘ONIJ MOU 8IB SJOB] BEOUL yyuuyyvyy¥ey
' JuBBAXo 3893, uByl Mou JuelIodET eI0m ST
«8z1basuesp, :quIy ® Jnq ‘3O
‘ao3se3 usbixo 383 03 soyd> nox

‘Buybex sy 8113 puw ‘jusssxd ST OF

‘uo§31®800T ST 8x73 ‘paddinbe st wee) ‘Aedowms st 3 &

13




§ o T

100 SI 314

S F

Q341831 1531
[osss]

[]
@

‘3O ST 203583 usbixo puw ‘pezibisusep sy wexw 8xy
‘POTJTIABA BT INO ST 8x1J ‘pejsey sy usbixo ‘szws s}

‘aussead ST OTPeW ‘INO ST SIFF ‘UOTIWDOT ST SIFI

‘paddinbe st weey ‘Aasjen ST 37 ‘Aexoms ST 3

vey¥syuyyuyyy SNIJ MOU STV S0WT SBOYUL ¥y¥¥¥¥NUEYY

‘usbixo 3803 03 ®SOUD NOX

‘NO 8T 183s8] usbixo pus ‘pezibasussp st BeIw 833 ‘PATITISA ST JNC ST BIf
‘quesexd sy OFpem ‘N0 ST SITF ‘UOTIEIOT ST BIf

‘paddynbe st wee3 ‘Aasien ST 3T ‘Asyoms S} 3%

vyyyuyuyyruyy -OOIJ MOU BIW BIDW] OBOUL yyyvwwyvyywy

‘20338q Ussq samRy Prnos 8zTHIBUBSD O3 ‘@OTOUD 38Bq BYJ JOU B

«dO ST Jo3s8) usbixo pue ‘bGuirbex sy sxy3 ‘quesead st of

‘uoyedor st exy; ‘peddinbe s1 weey ‘Aeycms sy 3y,

usys usbixo 3883 03 UOTETOSP anodk Jey3 mou ses nod

‘ano AZTI8A O3 SBOUD NDOX

"30 ST J03883 uebixo puw ‘pezibisusep ST WeIW 8XIJ

‘auessad sy DIpem ‘INO ST BSITF ‘UCTIWIOT ST @IT3

‘poddynbe s7 wme3 ‘Aiejen ST 3T ‘Asyoms ST 3F

Y¥yyyv¥yuryyy BNIJ AOU BIW SIJOV] OSBUL yyyusyswyyyy

‘I8II8q USS]q ARy PINOM 8zibasussp O3 EOTOUD IBS] U JOU SBM

«O ST 93883 usbixo puw ‘sjesun st uebixo )

14




\’-J

o

Lo ¥IND01 YIVdIY

IO Ajja0a
103503 usbAxo 1383
saseb 130}
Juemd jnd8 0103S
YI20M ySB| J0J 388
S0 8punoq 103
YOI yse (02 sindes
A3{ense> e>8(des
PI% asa)) Sy HOLYM
ey HSV133Y
g nbe
Vel i0) |82 1pew 3501 1p
203009

Nusep
02)6:0un0p

-
844
hd 844 ‘wo?u“

‘UOTIEDOT 8T IMNI0T atwdex ‘pazibisussp BT WeIE® BI13 ...“Mwuol— st Huyyserzex
‘POTITISA ST INO ST BIT] ‘ejes ST

‘aussexd s1 orpew ‘3no st ax13 ‘peddinbe st

vyyuyyyvuyusy -ONI] MOU 8IF SJOU] OSOUL yyyuyysyyyy

‘o338 snotasad w 03 HuruINex BIW NO,

-3eN001 ajwdex ob 03 esoyo No,

‘%0 8T aeso} usbixo

‘pezibasusep ST weaw 8273 ‘peycjes ST HUTYSETJEI ‘POIIIISA ST INO BT OITJ
‘ejes st usbixo ‘sjes eixw seseb ‘jussexd sy OF

‘30 ST 8IT3 ‘uUOf3ITIOT ST 8173 ‘paddinbe st wme3

vuyuryyyuyyyy -ONI] AOU BIB 8308 SEOUL yyyuyyywyyyy

:3ey3 seatnbax uwoyjom

¢ UOTIED0T ST &ITF, UITH ,UOCTIWDOT ST Ieydor xtedex, pesnjuod nol sasy
‘qusudinbs 83038 03 SSOUYD NOJX

, ‘30 S8t 03803 usbixo pus
pezibzeusep ST BOIw 8273 ‘peydiEa ST BUTYSW{JSI ‘POTITISA ST INO ST BIATJ
‘ejus 81 usbixo ‘szuws sxw sesub ‘juessad st OF

‘IN0 ST 8IF3 ‘uorirdol st ox13 ‘poddynbe st wee)

Yyu¥yyuyyyysy SNI] - Al BI8 BIOVI OSOUL yyyyyy¥¥N¥EE

15




UNCLASSIFIED
SECURITY CIRSSFRATON OF TREPAGE

' Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses
2000 N. Beauregard Street
Alexandria, VA 22311

Director of Research Administration
Code 08

Naval Postgraduate School
Monterey, CA 93943

Mr. Russell Davis
HQ, USACDEC
Atention: ATEC-1M
Fort Ord, CA 93941

Dr. Neil C. Rowe, Code CSRp
Naval Postgraduate School
Computer Science Departrent
Monterey, CA 93943

Prof. Ted Lewis, CS/Lt

Naval Postgraduate School
Computer Science Department
Monterey, CA 93943

16 SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED




